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Solution to Assignment 3

29. Find the area of one leaf of the rose r = 12 cos 36.

Solution. As the cosine function is 27-periodic, cos 36 is 27 /3-periodic. It suffices to plot its
graph in [—7/3,7/3]. Observing that in this interval, cos 30 is non-negative only on [—7 /6, 7/6],
there is one leaf sitting in [—7/6,7/6]. By rotating it by 27/3 and then by 47 /3, we obtain the
full graph of the rose which consists of three identical leaves.

By symmetry, the area of one leaf is
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41. In this problem we establish the famous formula by using double integral in a tricky way.
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Supplementary Problems

1. Express the hyperbola 22 — y? = 1 (y > 0) in polar coordinates. What is the range of 67
Solution. From 1 = r2(cos? — sin? ) = r2 cos 20 we get
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where 0 € (—7/4,7/4).

2. Let D be the sector bounded by the line y = ax,a > 0, the positive y-axis and the circle
22 + y? = r2. Use cartesian coordinates in your integration to show that its area is given
by 720/2 where © = tan~!a € (0,7/2).
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Solution. Let tana = a. « is uniquely determined in (0,7/2). The point of intersection
of the line and the circle is given by x = rcos« and y = rsina. D is described in cartesian
coordinates by ax <y < V1?2 — 22,0 < 2 < rcos a. The area of the sector is
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after using the relation cos a = sin ©.

Note. This formula for the area of a sector has been used in the derivation of the basic

formula
//D f(z,y) dA(z,y) = //R f(rcos@,rsin@)rdA(r,0) ,

where D is a sector and R is the corresponding rectangle. Although well-known since high
school or even primary school, it is consistent to derive it here by double integral.

3. Let D be the region bounded by the graph of y = v/1 — 2241 and the z-axis over 0 < z < 1.
Describe it in polar coordinates.

Solution. As a polar curve, 22 + (y — 1)2 = 1 is given by r = 2sin#. D is the union of
Dy and D9 where
Dy:0<0<7w/4, 0<r<1/cosb,

and
Dy: w/4<0<m/2, 1/cosh <r <2sinf .



